
Friendship Junior High School Sixth Grade Accelerated Math Program

Room 102A (Mr. Lavine)

Critical Thinking & Problem Solving

Special 3rd Quarter Unit

Problem Attack Skills Illinois Math League S.A.T.

Introduction to the S.A.T.

SUBSTITUTION PROBLEMS

- ① C Substitute the answers for y. See which one gives you an integer for x:
 - (A) 2 3x+2(2)=17 x=13/3
 - (B) $3 \times 12(3) = 17 \times = 11/3$
 - (c) 4 3x+2(4)=17 X=3
 - (D) 5 $3 \times +2(5)=17 \times = 7/3$
 - (E) 6 3x +2 (6) = 17 X = 5/3
- Quadrant I (+,+)+|+|=IQuadrant II (-,+)-|+|=IQuadrant II (-,-)-|+|=IQuadrant II (+,-)+|+|=-I

ANGLE PROBLEMS

4 B

If the area of \triangle ABC is 30,
then $\frac{1}{2}(Bc)(5) = 30$. That
makes BC = 12. If BC = 12,
then DC = 8.

Use the Pythagorean Theorem.
to solve for AC: $(AC)^2 = 5^2 + 8^2$ $(AC) = 89 \rightarrow (AC) = \sqrt{89}$

FUNCTION PROBLEMS

- ⑤ B (3x 04) = 3(3x) + 2(4) → 9x + 8 (9x + 8) 0 2x = 3(9x + 8) + 2(2x) 27x + 24 + 44 31x + 24
- 6 A x = -4y + x = -3y (2x-3x)-(4y-3y)+(2x-3y) (2x-3x-4y+3y+2x-3y)

CIRCLE PROBLEMS

The center of the circle is at (0,0). By checking intercepts, you can determine that r=5. $C=2\pi r \rightarrow C=2\pi(5)=10\pi$

8 D

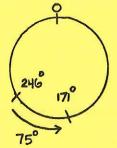
C=2πr → if C=6π for one circle, therefore:

6π = 2πr → r=3

If the radius is 3, the area of one circle is:

πr² → π(3)² → 9π

If the radius is 3, a side of the square in the middle is 6. The area of the square is 6×6=36.


The shaded region is:
(sq. avea) - (circle avea)
36 - 9TT

READING PROBLEMS

The turn (shown below) is 75°

246-171=75

At 3 degrees per second:

75:3=25 sec

(10) E

Substitute for a and b. Pick random multiples of 3 from the set. (This problem combines careful reading and substitution).

Example: a=3, b=6

(A) ab = (3)(6) = 18

(B) a+b=(3)+(6)=9

(c) a-b=(3)-(6)=-3

(D) -a-b = -(3)-(6) = -9

(E) 9/b = 3/6 = 1/2 (not in the set)

Be careful: If you had chosen to substitute a=9, $b=3 \rightarrow a115$ answers would be in the set.

Should this happen, choose a different pair of integer multiples of 3.

QUANTITATIVE PROBLEMS

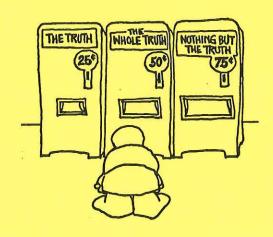
(1) B Since 1 > 1 N cannot be (-) or ≥1 or 0 (undefined)

Substitute a few values: 0 < N < 1 $N = \frac{1}{2}$ $N = \frac{1}{4}$ $(\frac{1}{2})^2 < 1$ $(\frac{1}{4})^2 < 1$

(2) D

Try values for x and y.

Remember to include 0


and negative values, x>y

It cannot be determined

AVERAGING

- ① Sum: 10x-6Divide: 10x-6 = 5x-3
- 2) Sum: 12 a+3b+9 Divide: 12 a+13b+9 = [4a+b+3]

- 3 Sum: -4x +12xy +4y
 Divide: -4x +12xy +4y
 4
 -x+3xy+y
- 4) Sum: 4a + 4b + 8 Divide: 4a + 4b + 8 = [a+b+2]

- 6 org. Sum: $12 \times 11 = 132$ new Sum: $10 \times 12 = 120$ missing numbers: 132-120 = 12avg: $12 \div 2 = 6$
- 6 Sum: $1 \times 24 = 24$ $2 \times 30 = 60$ $4 \times 32 = 128$ $2 \times 38 = 76$ $\boxed{9 \text{ teams}}$ 288 books

2nd trip:
$$\frac{90 \text{ miles}}{30 \text{ mph}} = 3 \text{ hrs.}$$

$$40x = 240$$

 $x = 6 \text{ hrs.}$
total time

6 hrs. (total) - 4 hrs. (1st trip) = return trip (2 hrs.)

(1) Ist trip:
$$2 \times 35 = 70$$

 $2 \times 40 = 80$
 $3 \times 50 = 150$
 $7 \text{ hrs. } 300 \text{ miles}$

$$40 \times = 600$$

 $X = 15 \text{ hrs.}$
total

15 hrs (total) - 7 hrs (1st trip) return trip (8 hrs.)

S.A.T. Multiple Choice

Demonstration Problems

(1) E use cross multiplication to solve the equation;

$$\frac{1}{x-1} = \frac{1}{5}$$
(5)(1) = (x-1)(1)

If John was 25 minutes late, the boys were supposed to meet at:
3:40 -: 25 = 3:15 PM

Bill was 50 minutes late: 3:15 +: 50 = 4:05 PM

- ③ C First solve for x: $x=2^2 \rightarrow x=4$ Then substitute: $x^2=4^2=16$
- $\bigcirc D$ $60 \times (.10) = 6 \rightarrow 60 6 = 54$ $54 \times (.10) = 5.4 \rightarrow 54 + 5.4 = 59.4$
- (5) D Substitute and evaluate: $\frac{2ab}{a^2-b} = \frac{2(2)(2)}{(2)^2-(2)} = \frac{8}{2} = 4$
- © E

 If the marks are an equal distance apart, each mark is 13." x is 6 marks: 6x3=18
- DE

 Be patient. Add. It's a complex fraction.

 numerator 12/3 → 4

 denominator 12/4 → 3

8 D

 \triangle ABC is isosceles (AB=BD). That makes \angle ADB = 65° \times is supplementary to 65

X= 115

165 65 X°

9 E

Pick a simple example to try: m = 3, n = 4Given this example, none of the first four choices are divisible by 7.

(10) E

Sum needed: 6(x+1) = 6x+6Sum of first 5 games: 5x-3Score needed: (6x+6)-(5x-3) = x+9 (1) C

use your imagination and your ability to "picture" this problem in your mind. 8 blocks stacked in 2 rows of 4 will have a common vertex.

(2) B

Draw and label 12. All sides "1" (smallest positive integer).

Draw in height and label.

this is a 30-60-90 \triangle The height is the long leg. $b = a\sqrt{3}$

Be sure to recognize special triangles.

(13) A

Plug in some values that fit easily: K=5,T=30 Using these values, it will take 2 hours to walk 20 km.

check to see which ans. equals 2 hours:

(A) $\frac{T}{3K} = \frac{30}{3(5)} = \frac{30}{15} = 2$

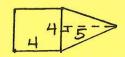
(A) D

x+y must = 14. Since both are single digit integers: 7+7, 6+8, 5+9 are possibilities. 5 is the smallest possible integer.

(5) B

Solve the equation for "y" as if k was a Coefficient:

Ky=x (大)(Ky)=(大)(x) y= 六


(6) E

x and y are alternate interior angles. That means X=y. If X+y=110, both x and y must be equal to 55° z is supplementary to x:

Z is supplementary to x: Z+55=180 -> Z=125

(17) C

To have an area of 16cm? the square must be 4cm by Hcm. That means the height of the triangle must be 5cm area of = \(\frac{1}{2} \) (base) (ht) triangle \(\frac{1}{2} \) (4)(5)=10

(18) E

To get the shaded area:
Take the area of the
square and subtract the
4 sectors. The 4 sectors
make one complete
circle with radius "r."


area of = TTr2

Equare) - (circle) $(2r)^2$ - (πr^2) $4r^2-\pi r^2$

(9) A

Since the longest side of a rt. triangle is the hypotenuse, the triangle looks like this:

area of A 支(base)(ht) 支×y

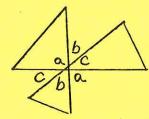
20 C

Pick simple values to substitute:

Kakb

(A) $a^2 = 2^2 = 4$

1<2<3 (B) 1/ab = 1/6


a=2,b=3 (c) $b^2=9$

(D) 1/a2 = 1/4

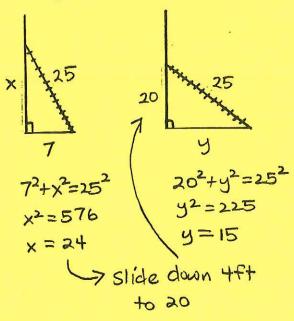
(E) ab = 6

2) B

Add all 9 angles together and you get: 3 (180) = 540° The three unmarked angles in the center = 180° because they represent 1/2 of 360° when you consider vertical angles.

540°-180°=360° marked unmarked

a+b+c=a+b+c


(22) C

According to definition, choose the integer equal to or just greater than the boxed values:

$$(-2) + (12) = 10$$

(23) E

At first, you might think the answer is (A) 4 ft. But, be careful. If you draw a diagram, the Pythagorean Theorem will help you:

Since the ladder is now 15 ft. from the building, it slides: 15-7 = 8 ft.

PART II

- ① D

 Plug 12 into the equation for x and solve for y: $\frac{x}{y} = 3$ 3y = x 3y = 12 y = 4Then plug in x = 12 and y = 4: x y = 12 4 = 8
- If you multiply a whole number by an even number, the result is even. Since "a" is multiplied by the large quantity, if "a" is even, the product is even.
- 3) A
 The square's area is half
 the area of the triangle.
 The square is 4 by 4.
- Since Z is the largest, x and y must be less than 500g. For 1500 to be the answer, all three would have to equal 500g
- (5) C Continued in next column

6 A

Turn toward B

Arrive at A

Turn toward D

Arrive at B $\frac{3}{7} = \frac{n}{42}$ n = 18

- (7) B

 Experiment with the answers:
 Only (B) and (C) sum to 12.
 Only (B) meets the other two
 Conditions.
- (8) D

 since AC is a side of both triangles, it can be ignored.

 Look at the other two sides.

 The large Δ has sides of 22, the small Δ has sides of 15.

22-15=7

- 9 B Sum of 4: 4x50 = 200 kg Sum of 3: 3x45 = 135 kg Missing object: 200-135 = 65 kg
- (10) B

 I. is false AB+CD ≠ AD

 II. is true

 III. is false AC-AB=BC

 AD-CD=AC
- D
 Start by substituting Q=20,
 h=5:

$$Q = \frac{(x+y)h}{2}$$
 $20 = \frac{(x+y)5}{2}$
 $(x+y) = 8$

If (x+y)=8, to get their average, add them together and divide by 2:

$$\frac{(x+y)}{2} = \frac{8}{2} = 4$$

12) E

the four marked angles add

to 180°, but no other information can be determined

to solve for y.

- (13) C
 Work backwards: After 20 min
 (1 left in room), after 15 min (2
 left), after 10 min (4 left),
 after 5 min (8 left), at 0 min
 (16 people)
- (H) A

 Choose simple numbers to substitute (avoid "1"):

 Example: f=3, l=4, w=5

 Using these numbers, each
 Square meter has 3 clovers.

 A 4 by 5 rectangle will
 have 60 clovers (3 × 20).

 The only solution = 60 is (A)

 flw=3.4.5=60
- The radius of the circle is t. The circumference of the circle: C=2TT = 8TT
- According to definition:

 (18) = 18 because 18 is (+)

 (-18) = -17 because -18 is (-)

 add one

 18 + (-17) = 1

S.A.T. Quantitative

Demonstration Problems

- 1 A 4 tens in 48, 3 hundreds in 348
- 2) A

 x² will be positive even if

 x is negative. 1/x² will be

 greater than 0.
- 3 C 4(2x-2) and 2(4x-4) both equal 8x-8. No matter what value x has, both will be the same.
- Φ B

 Using the Pythagorean
 Theorem: $6^2+8^2=100 \quad 12^2+5^2=169$ $hyp=10 \quad hyp=13$

- B

 The numbers in question are
 17 and 7. Even if you cannot
 determine those numbers
 quickly, 18 is too large:
 18+6=24 → 18-6=12
- 6 A 8-(7-6-5)=12 8-7-(6-5)=0
- \bigcirc C $V = 1.2.3 = 6m^3$ $V = 1.12.(.5) = 6m^3$
- 3 D unless all angles are 90°, the diagonals will not be equal.

unless all values create the same result, the relationship cannot be determined.

@ C Both circles have the same radius.

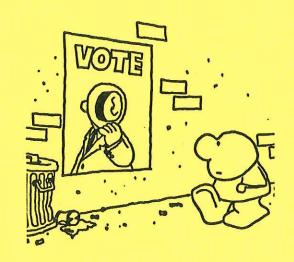
- D D

 x must be 0, but y could be
 positive or negative.
- (2) B
 Solve for x: 2x+2<1
 2x<-1
 x<-1/2
- (3) C

 using relationships learned when studying parallels and transversals, × and y can be shown to be supplementary.

 Thus: × = 180-y.
- (1.2)+(2.3)+(4.1)+(1.2)+(4.3)+(1.4) (3.2)+(4.3) 24 = 24
- (b) B (0.x)+(x.0)+(x.0)+(0.0
- (6) D

 For the equation to be true,


 x+y must = 0. But x could

be +6 and y could be -6 or it could be the reverse.

Therefore: x-y could be positive or negative.

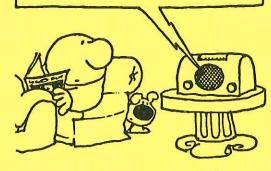
(f) C
Substitute any value for x
and both columns will be
equal. Example: X=2.

$$\frac{3x^2+x}{x} \qquad 3x+1=7$$

(18) D Substituting a positive value gives:

Substituting a negative value gives:

$$4 - \frac{1}{(-2)} = 4\frac{1}{2} \times 3 + \frac{3}{4} = 3\frac{3}{4}$$


(9) D

x could be 42 or 84. The first is less, but the second is equal.

60 A

It is not necessary to determine the exact value. Both columns start with the same value (106) and (A) subtracts a smaller amount (26) than B(36).

..AND NOW FOR THE FARM REPORTA MOO-MOO HERE, A MOO-MOO THERE, HERE A MOO, THERE A MOO, EVERYWHERE A MOO-MOO...

20 C

Column A: 60.30 = 1800

Column B: 1800

(22) B

Column A: Since y=2x, 2x-y=0

Column B: Must be positive even if x and y are both (-).

(23) C

Vertical angles being equal, both chords will be "cut" by central angles of the same measure. That makes the chords equal.

(24) D

If a or b is negative, Column A will be negative and Column B will be positive. If a and b are both positive, $ab = a^2$.

(25) A

Column A: $\frac{1}{\frac{3}{2}-1} = \frac{1}{\frac{1}{2}} = 2$

Column B: 3-1 = 1

26 A

Even though x is negative, x^2 is positive. Since x^2+1 is greater than x^2 , column A > column B.

(27) D

substitute.

Examples:

2(100) > 3(4)

2(6) < 3(10)

- 28 B

 If x and y are positive and less than 10, the maximum value of x-y is:
 9-1=8
- Angle relationships using parallels and a transversal show a and b to be Supplementary. Therefore: a = 180-b
- 30) A
 Solve the equation: $2\times -7 = 13 \rightarrow \times = 10$ Substitute: $2\times +7 = 27*$ 21
- (31) C Column A: 6.60.24 = 8640 Column B: 8640

32) A

The greatest distance from one side of a rectangle to the other is at the diagonal.

PART II

1 B

The triangle at the right shows y = 70. On the left, if y = 70 and z > 45, x must be less than 65.

- ② A

 Column A: $3 \cdot 2 = \frac{3}{2}$ Column B: $3 \cdot 2 = \frac{2}{3}$
- 3D Example: 2=5 105

Example: 2=-2 10-2 10-2 F/2 -2

B
Since x >30, more than 60% of the circle is shaded.
Therefore:
Hy % < 40% and y < 10

105

- The sum must be 48. Since $\times>0$, y<0 to keep the sum at 48.
- 6) D

 h and k are completely independent of each other.
 Either could be larger than
 the other.
- 90% of 10=9 9% of 100=9
- 8) A
 AC is 200 because C marks
 the middle of AE which is
 400. BD is 198.
- The three angles add up to 90° because the two lines are perpendicular (1), x and 70-x add up to 70°.

 That leaves 20° for y.
- B
 The first half takes 3 hours and the second half 1/2.

 180: 4 1/2 = 40

 40 kph is the average

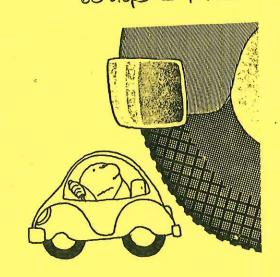
Both coordinates will be negative, but either could be larger than the other.

(12)C

When a number ends in "1" Clike 731), it will have a "1" in the units digit when raised to every positive power. When a number ends in "1" it will have a remainder of "1" when clivided by 10.

S.A.T. (A)

SECTION 2


- ① B Solve for x: $6x=12 \rightarrow x=2$. Therefore: 2x-1=2(2)-1=3.
- ②B If 1/8 of a number is 3, the number is 24. 1/3 of 24 is 8.
- 3 E
 Subtract \$.50 for the first 1/5 mile. Divide the remaining \$2.00 by \$.10 to get 20.

 20 × = 4 miles. Then add the first 1/5 = 4 1/5.
- The top angle of the triangle is 20° (vertical angles). That leaves 2x = 160 → x = 80.

©E

write clown the relationships
in equation form. Often,
you will see something:

15 dops = 1 tif
10 dops = 1 decadop -> mult, by 6
60 dops = 6 decadops
60 dops = 4 tifs

This is a reading problem, be patient and go slowly. Check each possible value of k to see if it is in the set: $\frac{27}{27} = 27 = 3 = 9 = 3$ $\frac{27}{27} = 1 = 1 = 3 = 7$ not in the set

- Because vertical angles are equal, the central angle that cuts are STQ is 30°.

 30 is equal to 12
- 9 C Substitute the possible answers. Notice: (1) $x^3 = (2x)^2 \rightarrow 4^3 = (2.4)^2$ 64 = 64
- (D) B

 Pick the smallest possible values for x-y (6-1) and check: 6+1=7
- This figure is clrawn to scale. You can quickly count 14 squares. Be careful: Since a square is defined as x (not x²), do not choose 14x².
- (2) E
 8 ounces of soda. Subtract
 6 ounces. 2 ounces are
 left in the bottle. 8
 ounces are empty out of
 10. capacity. 8/10 = 80%

- BC
 In the center of the figure, there is a quadrilateral (where the two rectangles overlap). All quadrilaterals have 360°. Notice: The H marked angles are supplementary to the H angles of the quadrilateral. Therefore: the marked angles total 360° angles must also total 360°
- (14) E with each condition (possible solution), try to find a reason it might not work.

Example: (A) \times <0 will not work if y is less than \times $(-2)-(-3)=\frac{1}{(-2)}$ (negative)

only solution (E) produces a positive under all circumstances.

- Since l is straight, Lx and Ly form a linear pair.
 Since x + y = 180, if x = y
 they both must = 90°
- (6) D use any number to rep-

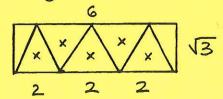
resent the number of marbles both have now. Example: John 10, "Bill 10. Before the gift," John had 16, Bill had 4. 16-4=12.

- For a fraction to be >1,
 the numerator must be
 larger than the denominator. Therefore: r>q>p.
 Plug in values and try
 them: r= 4, 9=2, P=1.
 (A) == 4 (not an integer)
- 18 D

 Take each condition one at a time and plug in numbers trying to show it to be false:

II T=+
$$h=2$$
 $K=1$
 $M \neq 2\rho$

The reciprocal of 4 is 4. Plug a=2 into each solution until you get a value


equal to
$$\frac{1}{4}$$
:

(A) $\frac{a-1}{a^2} = \frac{2-1}{2^2} = \frac{1}{4}$

- Don't be afraid of complex fractions: $\frac{3}{3} \times = \frac{3}{7} y$ Divide both sides by y and by $\frac{7}{3}$: $\frac{x}{y} = \frac{\frac{3}{7}}{\frac{7}{3}} \rightarrow \frac{3}{7} \div \frac{7}{3}$ $\frac{x}{y} = \frac{9}{49}$
- a) B

 make a diagram of the rectangle (6 by $\sqrt{3}$).

 5 triangles can be made.

If the average of V and W is p, you can replace V and w with p.

If the average of X, y, and Z is q, you can replace x, y, and Z with q.

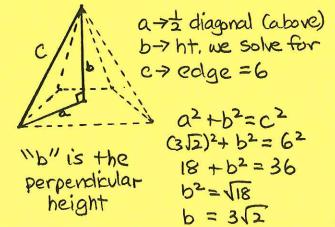
The average of
$$V, w, x, y, z$$
:

 $\frac{V+w+x+y+z}{5} = \frac{p+p+q+q+q}{5}$
 $\frac{2p+3q}{5}$

(23) C

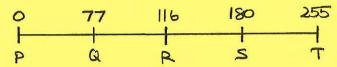
This is a difficult problem. The perpendicular height is the line segment that looks like a pole in the center.

First, look at the square base and determine the length of a diagonal using the Pythagorean Theorem:


$$6^{2}+6^{2}=x^{2}$$

$$x^{2}=72$$

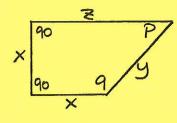
$$x=\sqrt{72}$$


$$x=6\sqrt{2}$$

Now, picture a triangle with legs and hypotenuse below:

24) B

Using the distances indicated below the line, you can label the points:



Using these points, calculate the midpoints:

mid point QS mid point PT
$$180-77=103$$
 $0+255$ 2 $103=51\frac{1}{2}=51\frac{1}{2}=1$ $128\frac{1}{2}-127\frac{1}{2}=1$

(25)A

Try to disprove the conditions. Condition I:

this example shows ABCD does not have to be a square or rectangle

Condition II:

In the diagram above y≠ Z.

Condition II:

Ptq must = 180 because
a quadrilateral has 360°

SECTION 5

- ① E Substitute: $x^2+3=(3)^2+3=12$
- ② C

 Experiment a little. Pick
 numbers that 3 divides into
 evenly, Check any remainders
 when dividing by 6.
- 3 E

 Plug in an even integer for x and check all of the answers.

5B Start with 42=64

Start with $y^2 = 64$ and keep taking the square root of both sides:

$$y^2 = 64$$

 $y = 8$
 $\sqrt{y} = 2\sqrt{2} = x$

6 B

Using numbers or letters to represent colors, fill in different colors starting with 3 in the middle. You will find it possible to keep filling in the 3 colors without overlapping regions.

- B. 8 squares on each side + 4 more for the corners.
- B A

 Do not determine the exact value. Column A adds a middle term that Column B subtracts.
- 9 C Vertical angles are equal.
- (6) B If 3x=6→x=2, If y+y=6→y=3.

- DA

 The largest angle of any right triangle is the 90° Z.
- ② D

The sets of integers are independent. Either could be very large or very small.

- B A
 Since x is larger, (A) will be positive and (B) negative.
- The series in Column (A) will total 31/32. Even if that series continued (+1/64 + 1/28 ...) it would never total as high as 1.
- (5) B Column A: 2 Column B: 3

- 16 A

 yz will be a positive

 Fraction less than 1.
- DD

 If w=-1, Column A will be less. If w=0, Column A will be greater.
- 18 B

 Both x and Yx will be negative. Yx will be closer to 0 (greater). Yx will be a negative fraction.
- ① CSolve for x; = = → x=15.= = +

@ D

- Since n could be positive or negative, there is no way to tell which column will be greater.
- (2) B

 Column A: 60.24.7

 Column B: 60.60.7

 There is no need to multiply it out. Column B is greater.

(1) C

Column A: V=6.6.6=216 Column B: V=3.3.3 ×8=216

23 B

Column A: 1-40 40% chance Column B: 41-100 60% chance

(24) A

Column A: Use the Pythagorean theorem $10^{2}+15^{2}=C^{2} \quad C=\sqrt{32.5}$

Column B: If the area of a square is 324, a side would be $\sqrt{324}$

25 C

Assign numbers to the original diagram:

Arc AB is. 1/2 the circumfer-

ence of

a circle with r=1

1/2 (2HXI)

IT

Arc BD D
is 1/4 of

the circumference of a circle with

r=2

4 (211)(2)=11

The arcs are equal.

(26) D

If a = |0| and b = 999 $|0| < \frac{999}{|0|}$

If a = 199 and b = 201 $\frac{199}{200} > \frac{201}{203}$

Ø B

All coordinates on the line will have x=y. Within quadrant I, all points above the line will have x<y and all points below the line will have x>y. Therefore: a < b and d < c Since Column(A) has the two smaller values, column (B) is greater.

28 D

Check each answer. (D) moves 6 beads. Left Right
Black 2 Black 1
Total 8 Total 4

69 B

There were 3 races. 9 points were awarded in each race (27 points in all). The other 2 teams totalled 16. 27-16=11

30 C
Since Lincoln totalled 9
points, they could have
had 5+3+1=9.

3) B Set up the following proportions and look at them

closely:

 $\frac{P}{q} = \frac{3}{5} \frac{q}{r} = \frac{10}{13}$ In the 2nd proportion, q is twice as large as it is in the 1st proportion.

 $\frac{P}{q} = \frac{6}{10}$ Double the 1st one to make q = 10

 $\frac{P}{r} = \frac{6}{13}$ Examine the values of p and r in these proportions when q is equal to 10.

(32) E

Since A and B are even and B=2A, here are the possibilities for AB: 24,48.

If AB=24: 24+24=48 and that makes C=4 and B=4.

Since C and B must be different digits, try AB=48.

48+48=96

DID IT EVER OCCUR TO YOU, ZIGGY, THAT THE NEIGHBORHOOD BULLY MIGHT NOT WANT TO MAKE FRIENDS

33 A

If you substitute different values for r, k, and m:

r=2, K=3, m=1

(Be careful to make J come out as an integer to keep things simple)

 $J = \lambda$ $J = \frac{(2)(3)}{(1)+(2)}$

check all answers:

(A) $\frac{JM}{K-J} \Rightarrow \frac{(2)(1)}{(3)-(2)} = 2$

Aquicker method involves factoring. This is an algebra Skill we will cover during the second quarter of 7th Grade.

 $J = \frac{rk}{m+r}$ mult. by (m+r)

JM+Jr=rk subtract Jr Jm=rk-Jr factor out the r Jm=r(k-J) clivide by (k-J) $\frac{Jm}{k-T}=r$

...THERE MUST BE A
BETTER WAY TO SPEND
MY EVENINGS THAN TO
JUST SIT AROUND
HOPING FOR A WRONG
NUMBER

3 D

To have a surface area of 54, each of the 6 faces must have an area of 9. That makes the first cube $3 \times 3 \times 3$.

To have a surface area of

216, each of the 6 faces must have an area of 36. That makes the second cube 6 × 6 × 6.

Cube 1: $V=3\times3\times3=27$ cm³ Cube 2: $V=6\times6\times6=216$ cm³

Double Cube 2: 432 cm³
It takes 16 of the first cube (16 x 27) to make 432 cm³

35) E

Pick any number. Example: 3

3+3+3+3+3+3+3+3+3+3

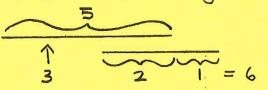
 $\frac{30}{10} = 3$ (average)

30 is 10 times 3.

1 x any number is 100% of the number. 10 x any number is 100% × 10 = 1000%

S.A.T. (B)

SECTION 2


- ① D

 If $x^3 + y = x^3 + 5$, y = 5
- ② B y and 2y form a linear pair. y+2y=180 \rightarrow 3y=180 \rightarrow y=60. Since x and y are vertical angles, x=y
- 3 D Substitute values: $x^{2}+y+\frac{y}{x} \rightarrow (-3)^{2}(0)+\frac{0}{3}=0$
- There is an odd number of 1's in 111. 3 1's cannot divide into 8 9's.
- 6 A

 Count backwards from 15
 to 1 on the calendar.
- 6 C

 If the overlap is 2m, the section to the left is 3 and

the section to the right is 1.

- ① C Sum of items: \$11.45 Avg: 11.45 ÷ 5 = \$2.29
- Reduced by 10%, I saucer
 is reduced from \$1.90 to \$1.71.
 Save 19\$ x 8 = \$1.52
- 9 E In order: .1201, .11, .102, .101, .1001

- The circle can fit into the square but has an area greater than half.
- (1) E
 Possibilities: (5,8) (7,6) (7,8)
- 12 D

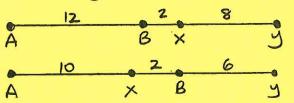
 Try each condition with a variety of even integers trying to disprove them:

Condition I: Disproven $\frac{(2)+(4)}{2}=3 \text{ (odd)} \frac{(2)+(6)}{2}=4 \text{ (even)}$

Condition II: Always works (6)-(2)=4 (even) (10)-(4)=6 (even)

Condition III: Always works (6)+(2)=8 (yes) (12)+(10)=22 (yes)

B E
This problem can be done quickly once you study factoring in 7th grade:


x²-y²= (x+y)(x-y)

3(x+y)(x-y) = 3(27)=81

If do not understand how to factor, you can experiment to find values for x and y: $x^2-y^2=27$ x=6 y=3 Therefore 3(x+y)(x-y): 3(6+3)(6-3)=81

(4) E

Look for possibilities that fit the conditions, Since more than one possibility exists, you must choose (E).

(5) A

Plug in a value that fits the condition.

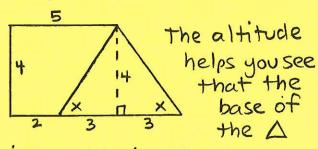
Example: X=11

11:7=1,r4, 2x=22,

(b) C

The triangle at the left is a 45-45-90. Therefore: x=4, 2x=8, AC=12

(7) A

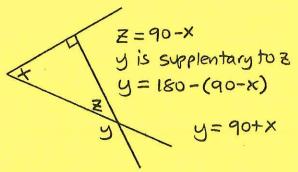

Pick a value for d. Example: d = \$100. Based on this example, each ticket costs \$1,5 tickets cost \$5.

Plug in d=100 to each solution to determine which is equal to \$5.

(A)
$$d/20 = 100/20 = 5$$

(8) A

Drop an altitude in DABC:


15 equal to 6. The area: A= \(\frac{1}{2} \) (6)(4)=12

(9) D

It is always important to label proportions:

read scripts 4 unread 16 total scripts 20 read 4 (unread: 20-4=16) 4:1 20) A

In the diagram, the angle marked \geq is 90-x Clarge Δ : (90)+(x)+(90-x)=180)

(1) C

The first person shakes hands with 9 people. The second shakes hands with 8 other people (one has already been counted)...

9+8+7+6+5+4+3+2+1=45

(22) E

Write out the proportions and examine them.

when y=3, x and z are opposites, use this when examining each condition.

Condition I: works

$$\frac{X}{Z} \rightarrow \frac{\text{number}}{\text{opposite}} = -1$$

Condition II: Does not work xy -> values can change

Condition III: Works (x+z)²→ (numb + opposite)²=0

23 B

If the arcs are equal, Arc CDE is 2/5 of the O. If the area is 25TT, the radius is 5 (TTr2 -> TT52) The circumference of the whole circle is: 2TT = 2TT(5) = [OTT] Arc CDE is 2/5 of 10TT;

(2/5)(10TT) = [4TT]

24 B

Plug in numbers that fit the condition. x is odd. Example: x=5,3x+1=16

Next 2 odds: 17+19=36

Examine the solutions looking for 36:

(A)6x+8=38 (D)6x+4=34 (B)6x+6=36 (E)6x+3=33 (C)6x+5=35

23 D

Choose numbers that fit the conditions:

Alice 20 (common denom.)
Bob 16 (4/5 of Alice)
Chris 12 (3/4 of Bob)

Avg. of Bob and Chris $(16+12) \div 2 = 14$ Alice \div (avg) $20 \div 14 = \frac{20}{14} = \frac{10}{7}$

SECTION 5

- DB
 Solve for x. Multiply by
 5 to start: 9+x=10,x=1
- D D H+8+9=21 21 ÷3=7

- 3 C

 Take the second equation and solve for x.

 10x=14. X=14/10=7/5.

 Then substitute into the first equation:

 X=\frac{2}{5} → \frac{7}{5} = \frac{7}{5} → y=7
- \oplus E

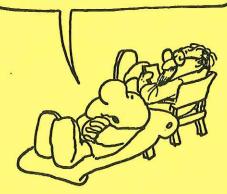
 Set up equations to solve for \times and y. 14 = x+5 12 = y-3 $\times -y$ x = 9 y = 15 9 15 = -6
- 5 C 32 K is 8 times as much as 4k.
- 6 D
 Check each possible solution
 Set. It is correct if each
 number in the set is 1/2
 of one of the dements of p.
- Temp on last day: 252-186=66
- 8 C
 Anything times 0 is still 0
- A
 No matter what value is

assigned to "a": 25 more than "a" is greater than 5 less than "a."

- (D) D

 AB+CD must equal 60, but either one could be longer than the other. That makes it impossible to compare.
- © C If 3 cups is half, 6 cups is the Capacity.
- Because you do not know which costs more before the discount, it is impossible to compare.
- B Evaluate the expression: $3y^2-2x$ $3(1)^2-2(-2)=(3)-(-4)=7$
- A

 X+Z=80° to make up 180°


 in the triangle. It is not possible for x to be equal to or greater than 90°.
- (15) D Both columns include (btc),

but "a" might be positive, negative, or a fraction. When mutiplied, "a" could make the product larger or smaller.

6 B

Since x is positive, 2x+3 will be greater than x. That makes y larger.

...MY CAR ODOMETER JUST CHANGED FROM 27999 TO 28000...AND IT WAS THE BIGGEST THRILL I'D HAD IN <u>WEEKS</u>!!

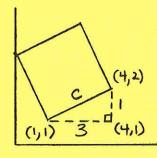
(f) C \times is supplementary to 110° $\times + 110 = 180$, $\times = 70°$ y is equal to 110° (alternate interior angles) $\times + 40 \rightarrow (70) + 40 = 110°$, y = 110°

® B
Following this pattern, the
34th number will be -1.
34:3=11 r1. This means that

the number will be the first in the sequence.

- (A) A
 One meter per second = 60m/min.
 This much faster than 60m/hr.
- ② B

 Column: (x-2)+5+(x+9)=2x+12.


 Row: 5+(w+2)+(w+4)=2w+11If 2x+12=2w+11, w must be larger.
- Assign values in proportion:
 Tina 30, Rita 20
 Since Rita: Maria is 1:2,
 Maria is 40
- All sides of ABCD are radius measures. Since the diameter is x, the radius is equal to 1/2 x. Per ABCD = 4(1/2x)=2x
- Plug in values for x>1, x=1, x<1 and check the results. The system of in equalities will not work unless x <1.

(24) B

Line Segment AE is common to both Δ 's so we will check the remaining sides. The second Δ has a greater perimeter because AD>BE and ED>AB.

Plugging in values for n shows n=4 and n=7 will produce values for 2n+1 that are multiples of 3.

(6) C
To find the area of ABCD,
it is necessary to determine
the measure of the sides.
Use the Pythagorean Theorem.

The point (4,1) is the vertex of a right Δ .
The legs can be determined using the x and y values.

The hypotenuse can then be determined: $1^2+3^2=c^2$ $c^2=10$ C= $\sqrt{10}$ If a side of the square is $\sqrt{10}$, the area is $(\sqrt{10})^2=10$.

(27) C
Plug in values. You will find
that 1,2,3,4,5 are perfect
hypercubes. 6 is not.

28 D

Choose numbers that can serve as proportional co-efficients. The largest number needed is the common denominator of the two Fractions.

Soph 12x 12x+9x+6x=360 Jun 9x 27x=360 Sen 6x $x = 13.\overline{3}$ Seniors: $6x = 6(B.\overline{3}) = 80$

(29) C

Substitute 3 for a, 4 for b. Evaluate abta: (3)(4) + (3) = 15

30 B

Solve the left side of the equation: (4)(6)+(4)=28Substitute x for a, 5 for b. 28 = (x)(5)+x28 = 6x x=14/3 (31) E

All points above the angled line have coordinates with $\times > y$. Points below the line have coordinates with y > x.

Since r>x, it must be EarD. For E: y>s For D: y<s

(32) A

Substitute a value for b and for x. Ex: b=3, x=1

 $3 = (3)^{(1)} \rightarrow 3b \rightarrow 3(3) = 9$

Plug in the same values into the solutions. Two of them work:

(A) $b^{x+1} \rightarrow 3^{1+1} = 3^2 = 9$

(D) $b^{2x} \rightarrow 3^{2(1)} = 3^2 = 9$

Try another set of values: Ex: b=13, x=2

3= (13)2H=(13)3=313

Plug in:

(A) b×+1 → (B)²+1=(B)³= 3(3)

(b) $b^{2x} \rightarrow (13)^{2(1)} = (13)^{2} = 3$

(33) D

Surface area of rt. \triangle prism: A = 2(base area) + (per)(ht) $2\left[\frac{1}{2}(2.8)\right] + (10+168)(3)$ $16 + (30+3168) = 46+3\sqrt{68}$ (34) B

Set up a chart with a value for n: n=20

now In 2 yrs

Jim (18 - 20 Polly 9 -> 11

(A) 学=10 (B) 学+1·画

(c) $\frac{20}{2}$ +2=12 (d) 20+2=22

(E) 2(20) =40

(35) B

Pick an original price: \$10
Reduced by 20% = \$8
Substitute P=8 into the
Solutions looking for 10:

(A) 1.8 (P)= 1.8(8)

(B) 1.25(P)= 1.25(8)=10

(c) 1,2(p)=1,2(8)

(8)8. = (9)8. (a)

(E).75(P)=.75(8)

ive GOT ONE OF THOSE DISAGREEABLE COLDS ...SOMETIMES THE EYES HAVE IT, SOMETIMES THE NOSE !

S.A.T. (C)

SECTION 2

- 1) A 22.3. Q=6, 66Q=6, Q=1/11
- (B) is just right of 2nd line (P) is just left of 2nd to last line.
- 3 A 100 + 1/10 = 1000
- 4 E

 x is supplementary to 40°

 X=140°

 e is vertical to 140°, e=140°
- Since he uses oranges twice as fast, the oranges will run out first after 50 bags: 50 x 2 = 100
- 6 E
 Since the figure is not drawn to scale and there is no additional information, no assumptions can be made about the sides that are not labelled.

(45+55)²= 100° Estimate to determine (c) is the answer: $50^{\circ} + 2(50)(50) + 50^{\circ}$ 2500 + 5000 + 2500 = 10,000This problem can be solved quickly once you have learned about factoring in 7th grade: $x^{\circ} + 2xy + y^{\circ} = (x+y)^{\circ}$

8 B
 8x + 2x = 10x → 10x + 5
 Substitute a few positive integers:
 10x + 5 = 10(1) + 5 = 15 | multiples 10x + 5 = 10(2) + 5 = 25 | of 5
 10x + 5 = 10(3) + 5 = 35 | of 5

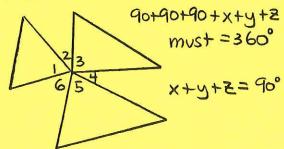
- A quick sketch will help.

 Another method:
 (12,8) is up 12, over 8 from
 the origin. Slope 12/8 = 3/2.

 (3,2) is up 3, over 2
- Substitute: Example x=-10All answers are true
 except (D) 2-x < 2-2 2-(-10) < 2-2false
 inequality 12 < 0
- I) D If $2^{3/8} = 1 + \text{fraction}$, the fraction must equal $1^{3/8}$ $1^{3/8} = 1^{1/8}$ $1^{1/8} = 33/24$

235 · △ = 1 □ 10

 \triangle must be 0,4,6, or 8 to produce a zero in the units digit. \triangle must be 6 to produce 1 in the tens digit. That makes $\square = 4$.


(B) D

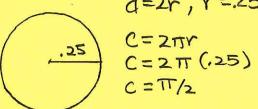
Since the new ratio has 2 with the least number of marbles, experiment by taking marbles out of 2.

Transfer 3 from 2 to x: x y 2 -> 9 6 3

The six middle angles add up to 360°

(15) E

If $px = p^3x$ and $x \neq 0$, that means $p = p^3$ You can cancel x on each side


For p to equal p^3 , p can be: 0, 1, -1

- (16) C
 Be careful, it's not 1/3 × 1/2.

 After 1/3 has been eaten,
 that leaves 2/3.

 Now 2/3 × 1/2 = 1/3

 Let remainder of sandwich
- The center of the wheel will travel forward the length of the circumference each revolution d=2r, r=.25

3 revolutions: 3(1/2) = 31/2

- (B) C Substitute each answer to See which works: (A) 7+5+2+4+(4)=22(B) 7+5+2+4+(4.5)=22.5(C) 7+5+2+4+(6)=24(D) 7+5+2+4+(18)=36(E) 7+5+2+4+(24)=42
- (9) D
 Since the largest number in the chart is 10 (dist. Poloto Greco), those cities are farthest apart. Only (D) shows them first and last.

20 A

Pick the highest and lowest

possible values for x and y.

Try those combinations:

$$\frac{x}{3} - \frac{y}{4} = -1$$
 $\frac{3}{7} - \frac{y}{4} = \frac{y}{4}$
 $\frac{y}{4} + \frac{y}{4} = \frac{y}{4}$
 $\frac{y}{4} + \frac{y}{4} = \frac{y}{4}$

- 2) B The figure is an octagon. $(8-2) \times 180 = 1080^{\circ}$ $1080 \div 8 = 135^{\circ}$
- DE Try each combination:

Square reciprocal

I)
$$.25^2 = 1/16$$
 $2 \rightarrow 1/2$ $4 \rightarrow 1/4 *$

II) $1^2 = 1$ $1 \rightarrow 1/4 *$

II) $.5^2 = 1/4$ $4 \rightarrow 1/4 *$
 $4^2 = 16$ $5 \rightarrow 2$

- 23 E 25% of 300 = (.25)(300)=75 $\frac{part}{whole}$ $\frac{75}{n} = \frac{7.5}{100}$ n = 1000
- 24)B

 If the sum of the 6 faces

 15 54x²: 54x²:6= 9x²

 That makes each face 3x by 3x

 V=(3x)(3x)(3x) = 27x³

(25) C

Set up a chart based on the relationship rxt = d

(rate x time = distance)

rate x time = distance

Trip 1 +0 · n = +0 n

Trip 2 30 · 1-n = 30-30 n

Total time is 1 hr. Distances

are equal

One way n = 30-30n distance:

40 n = 40(30/7) = 120/7Round trip: $2(120/7) = 34\frac{2}{7}$ miles

SECTION 5

- ① C $22,222 + (5.10^{3})$ 22,222 + (5000) = 27,222
- ② A
 Set up a proportion:

 acres plowed $\frac{3}{7} = \frac{n}{16}$ $\frac{7n = 48}{n = 66/7}$
- 3) E

 The bottom two angles are
 Supplements:

 130°→50° } 80° + x = 180, x = 100°.

The largest product in question is 99 x 99. Rather than multiply it out, try this:

100.100 = 10,000

Smallest possible 5 digit numb.

99.99 must be only 4

.i was so poor as a child all i had to play with were my mental blocks !!

- (5)(x)-(3)(x)=10 5x-3x=10,2x=10,x=5
- 6 B $y \times 2 + 4 \times 9 - 9 \times 0$ (3x-2y) + (1x-4y) - (2x-0) 3x-2y+x-4y-2x+02x-6y

$$(B)_{6\times 1} = 2\times -69$$

- The bottom two angles sum to 120°. They are equal (opposite sides are equal). All angles are 60°. It is an equilateral triangle.

 5+5+5=15
- Without taking time to do
 the entire long division,
 the first digit of the
 quotient will be "2," and it
 will be a 3-digit quotient.
 x > 200

(10) B

Column A: 100 ÷ 2

50 km/hr

Column B: 100 ÷ 1/2

200 km/hr

- DD

 If n<12, Column B is larger

 If n=12, both columns are

 the same
- (2) B
 A quadrilateral has 360°
 90+50+70+x=360
 X=150
- (B) A Substitute a fraction, I, and a number greater than I:

$$\frac{\left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right)}{\frac{1}{2}} = \frac{\frac{1}{4} + 1}{\frac{1}{2}} = 2\frac{1}{2}$$

$$\frac{(1)^{2}+2(1)}{1}=3$$
As x gets
larger,
Column A
$$\frac{(2)^{2}+2(2)}{2}=4$$
gets larger

- (H) C x and y are equal (alt. interior angles) xty = x + x = 2x
- (5) B Since K<4, 10-k will be greater than 6
- If w=120, z is 60° because it is supplementary.

 Since x > y, the largest possible value for y is still < 60°.

- (f) A x can only equal 5
- (8) D

 Look "past" the drawings because they are not drawn
 to scale: Either triangle
 could have a very large or
 very small base.
- Solve the proportion $\frac{.8}{.04} = \frac{.04}{x}$ $\frac{.8x}{x} = .0016$
- Since p is positive and n is negative: Adding n will make Column B smaller.
- 21) A
 Divisors are factors:
 Column A: 12-7 1,2,3,4,6,12
 Column B: 16-7 1,2,4,8,16
- Column A: (p+q)²
 Column B: (p-q)²
 Both will be positive when
 Squared, but p or q could be
 negative making it impossible
 to determine which is larger.
- 23) C

 Look at the $\begin{cases} (x+y)-z=x \\ x+y-z-x=0 \end{cases}$ 2nd equation $\begin{cases} y-z=0 \rightarrow y=z \end{cases}$

- Column A is a complex fraction: $\frac{23}{3} = \frac{2}{3} : \frac{3}{2} = \frac{2}{3} \cdot \frac{2}{3} = \frac{4}{9}$ Column A: $\frac{4}{9}$ Column B: $\frac{2}{3}$
- © C

Column A: (,15)(2000)=300 Column B: (20)(15) = 300

Substitute some possible values: x > y > 1 Ex: x = 3, y = 2Column A: $x^y = 3^2 = 9$ Column B: $y^x = 2^3 = 8$

Ex: x=5, y=2 Column A: xy=52=25 Column B: yx=25=32

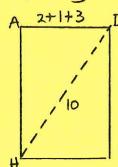
This problem is tricky; $y = A = \frac{1}{2}y^{2}$ $A = \frac{1}{2}y^{2}$ $A = \frac{1}{2}x^{2}$ $A = \frac{1}{2}x^{2}$

Area of both triangles = $\frac{x^2+y^2}{2}$ Middle triange: Use Pyth. Theorem

$$\frac{2}{x}\int_{X} y \quad x^{2}+y^{2}=2^{2}$$
Therefore:
$$\frac{x^{2}+y^{2}}{2}=\frac{2^{2}}{2}$$

28 B Average is sum divided by 2: $\frac{x+3x}{2}=8 \quad \frac{4x}{2}=8 \quad x=4$

Substitute for n: n=3, n=4(A) n^2 $3^2=9$ $4^2=16$ (B) n(n-1) 3(3-1)=6 4(4-1)=12(C) n-1 3-1=2 4-1=3(D) 3n+1 3(3)+1=10 3(4)+1=13


(E) 4n+3 4(3)+3=15 4(4)+3=19

It is important to try one even and one odd value.

Notice: (E) must be odd because 4n has to be even. Then add 3 makes it odd

30 A

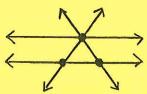
If you know the Pythagorean
triples, this can be solved
quickly:

legs bye $AD^{2}+AH^{2}=DH^{2}$ $6^{2}+AH^{2}=10^{2}$ AH=8(triple 3-4-5).2

If AH=8, the rectangle BCFG

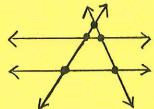
has dimensions 1 by 8 A = 1.8 A = 8

(31) B
One tree on each point of intersection would make:
4 on each line segment
Total of 10


Now, since 2k = 2(1/2) = 1: Check the answers to see which one equals I when x = 1:

(c)
$$\frac{1}{\frac{1}{2} + \frac{1}{2x}} = \frac{1}{\frac{1}{2} + \frac{1}{2(1)}} = \frac{1}{\frac{1}{2} + \frac{1}{2}}$$

 $\frac{1}{1} = 1$



3 D

make some diagrams - all of which have exactly 2 parallel lines:

3 points

5 points

4 points of intersection is not possible

34) D

D Pick values for B and C that fit the condition (B is 125% of C):

Ex: B=10, C=8

what % of B is C?

 $\frac{\text{part}}{\text{whole}} \quad \frac{\text{C}}{\text{B}} \rightarrow \frac{8}{10} = 80\%$

(35) B

1/8 inch marks: 9 including end points

No inch marks: Il including end points

9+11=20

Common points: 2 end points

(3) 4 and 5 3 same

8 and 10 3 point

20-3=17 points

IF EVERYBODY IN THE WORLD
IS HERE TO HELP OTHERS
....WONDER WHAT THE
OTHERS ARE HERE FOR ??

